Giant magnetoresistive-based biosensing probe station system for multiplex protein assays.

نویسندگان

  • Yi Wang
  • Wei Wang
  • Lina Yu
  • Liang Tu
  • Yinglong Feng
  • Todd Klein
  • Jian-Ping Wang
چکیده

In this study, a sensitive immune-biosensing system capable of multiplexed, real-time electrical readout was developed based on giant magnetoresistive (GMR) sensor array to detect a panel of protein biomarkers simultaneously. PAPP-A, PCSK9, and ST2 have been regarded as promising candidate biomarkers for cardiovascular diseases. Early detection of multiple biomarkers for a disease could enable accurate prediction of a disease risk. 64 nano-size GMR sensors were assembled onto one 16 mm × 16 mm chip with a reaction well, and they could work independently and be monitored simultaneously. A detect limit of 40 pg/mL for ST2 antigen had been achieved, and the dynamic ranges for the three proteins detection were up to four orders of magnitude. The GMR sensing platform was also selective enough to be directly used in serum samples. In addition, a lab-based probe station has been designed to implement quick lab-on-a-chip experiments instead of wire bonding. It has a potential application in clinical biomarkers identification and screening, and can be extended to fit other biosensing schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A three-layer competition-based giant magnetoresistive assay for direct quantification of endoglin from human urine.

This study presents a three-layer competition-based assay for ultrasensitive detection and quantification of endoglin from unprocessed human urine samples using a giant magnetoresistive (GMR) sensor and high-moment magnetic nanoparticle-based biosensing technology. This biosensing platform detects as few as 1000 copies of endoglin at concentrations as low as 83 fM with high detection specificit...

متن کامل

Multiplex protein assays based on real-time magnetic nanotag sensing.

Magnetic nanotags (MNTs) are a promising alternative to fluorescent labels in biomolecular detection assays, because minute quantities of MNTs can be detected with inexpensive giant magnetoresistive (GMR) sensors, such as spin valve (SV) sensors. However, translating this promise into easy to use and multilplexed protein assays, which are highly sought after in molecular diagnostics such as can...

متن کامل

Magnetoresistive performance and comparison of supermagnetic nanoparticles on giant magnetoresistive sensor-based detection system

Giant magnetoresistive (GMR) biosensors have emerged as powerful tools for ultrasensitive, multiplexed, real-time electrical readout, and rapid biological/chemical detection while combining with magnetic particles. Finding appropriate magnetic nanoparticles (MNPs) and its influences on the detection signal is a vital aspect to the GMR bio-sensing technology. Here, we report a GMR sensor based d...

متن کامل

Deep Flaw Detection with Giant Magnetoresistive (gmr) Based Self-nulling Probe

The use of giant magnetoresistive (GMR) sensors for electromagnetic nondestructive evaluation has grown considerably in the last few years [1-4]. Technological advances in the research and development of giant magnetoresistive materials has led to commercially available GMR sensors with many qualities well suited for electromagnetic NDE. Low cost GMR magnetometers are now available which are hi...

متن کامل

Submicron giant magnetoresistive sensors for biological applications

We have fabricated submicron giant magnetoresistive (GMR) structures and evaluated their sensitivity for biomagnetic applications. GMR devices were fabricated using electron beam lithography, with minimum dimensions below 100 nm. We developed a new characterization technique for these sensors, using a scanned nanoscale magnetic probe and monitoring the resulting response of the sensors. The mag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biosensors & bioelectronics

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2015